B.Sc. SEMESTER-I
MJC(T)/MIC(T)
Inorganic Chemistry

Atomic Structure and Chemical Bonding

Atomic Structure- Quantum Numbers and their Significance

Dr. Jasmine Singh Assistant Professor Department of Chemistry Maharaja College(VKSU), Ara

Quantum numbers

 Each orbital in an atom is specified by a set of three quantum numbers (n, l, m) and each electron is designated by a set of four quantum numbers (n, l, m and s).

(2) Principle quantum number (n)

- (i) It was proposed by Bohr's and denoted by 'n'.
- (ii) It determines the average distance between electron and nucleus, means it is denoted the size of atom.

$$r = \frac{n^2}{Z} \times 0.529 \, \text{Å}$$

(iii) It determine the energy of the electron in an orbit where electron is present.

$$E = -\frac{Z^2}{n^2} \times 313.3 \ Keal \ per \ mole$$

- (iv) The maximum number of an electron in an orbit represented by this quantum number as $2n^2$. No energy shell in atoms of known elements possess more than 32 electrons.
- (v) It gives the information of orbit K, L, M, N------
- (vi) The value of energy increases with the increasing value of n.
- (vii) It represents the major energy shell or orbit to which the electron belongs.
- (viii) Angular momentum can also be calculated using principle quantum number

$$mvr = \frac{nh}{2\pi}$$

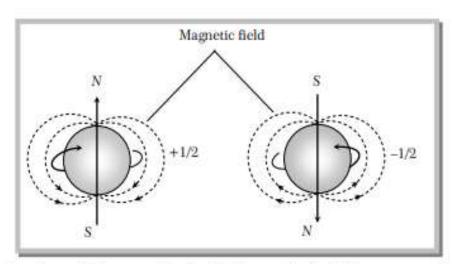
(3) Azimuthal quantum number (1)

- (i) Azimuthal quantum number is also known as angular quantum number. Proposed by Sommerfield and denoted by 'l'.
- (ii) It determines the number of sub shells or sublevels to which the electron belongs.
- (iii) It tells about the shape of subshells.
- (iv) It also expresses the energies of subshells s (increasing energy).
- (v) The value of l = (n-1) always where 'n' is the number of principle shell.

(vii) It represents the orbital angular momentum. Which is equal to? $\frac{h}{2\pi}\sqrt{l(l+1)}$

(viii) The maximum number of electrons in subshell = 2(2l+1)

$$s$$
 – subshell \rightarrow 2 electrons d – subshell \rightarrow 10 electrons p – subshell \rightarrow 6 electrons f – subshell \rightarrow 14 electrons.


- (ix) For a given value of 'n' the total value of 'l' is always equal to the value of 'n'.
- (x) The energy of any electron is depend on the value of n & l because total energy = (n + l). The electron enters in that sub orbit whose (n + l) value or the value of energy is less.

(4) Magnetic quantum number (m)

- It was proposed by Zeeman and denoted by 'm'.
- (ii) It gives the number of permitted orientation of subshells.
- (iii) The value of m varies from -l to +l through zero.
- (iv) It tells about the splitting of spectral lines in the magnetic field i.e. this quantum number proved the Zeeman effect.
- (v) For a given value of 'n' the total value of 'm' is equal to n^2 .
- (vi) For a given value of 'l' the total value of 'm' is equal to (2l+1).
- (vii) Degenerate orbitals: Orbitals having the same energy are known as degenerate orbitals. e.g. for p subshell p_x p_y p_z
- (viii) The number of degenerate orbitals of s subshell =0.

(5) Spin quantum numbers (s)

- (i) It was proposed by Goldshmidt & Ulen Back and denoted by the symbol of 's'.
- (ii) The value of 's' is + 1/2 and 1/2, which is signifies the spin or rotation or direction of electron on it's axis during movement.
- (iii) The spin may be clockwise or anticlockwise.
- (iv) It represents the value of spin angular momentum is equal to $\frac{h}{2\pi}\sqrt{s(s+1)}$.
- (v) Maximum spin of an atom = $1/2 \times$ number of unpaired electron.

(vi) This quantum number is not the result of solution of Schrödinger equation as solved for H-atom.

Distribution of electrons among the quantum levels

π	ı	m	s	Designation of orbitals	Electrons present	Total no. of electrons
1 (K shell)	0	0	+1/2, -1/2	1s	2	2
2 (L shell)	0	0	+1/2,-1/2	2s	2]	
		+1	+1/2,-1/2		1	8
	1	0	+1/2,-1/2	2p	6	
		-1	+1/2,-1/2			
3 (M shell)	0	0	+1/2,-1/2	3s	2]	
		+1	+1/2,-1/2		+	
	1	0	+1/2,-1/2	3 <i>p</i>	6	
		-1	+1/2,-1/2			
						18
			+1/2,-1/2			
		+2	+1/2,-1/2			
		+1	+1/2,-1/2	3d		
	2	0	+1/2,-1/2			
		-1	+1/2,-1/2		10	
		-2				

	0	0	+1/2,-1/2	4s	2]	
		+1	+1/2,-1/2			
	1	0	+1/2,-1/2	4p	6	
		-1	+1/2,-1/2			
4(N shell)	2	+2 +1 0 -1 -2	+1/2,-1/2 +1/2,-1/2 +1/2,-1/2 +1/2,-1/2 +1/2,-1/2	4d	10	32
		+3			+	
		+2				
		+1		4f	14	
	3	+0		8.	234	
		-1 -2	+1/2,-1/2			
		-3	+1/2,-1/2			
			+1/2,-1/2			
			+1/2,-1/2			
			+1/2,-1/2			
			+1/2,-1/2			
			+1/2,-1/2			